L-3 and L-4 Water Demand

Environmental Engineering-I
 - By Prof S S Jahagirdar

Gontents

Intake work, Demand of water,

Intale Work

The basic function of the intake structure is to help in safely withdrawing water from the source over predetermined pool levels and then to discharge this water into the withdrawal conduit (normally called intake conduit), through which it flows up to water treatment plant.

factors foverining Location of Interte

- As far as possible, the site should be near the treatment plant so that the cost of conveying water to the city is less.
- The intake must be located in the purer zone of the source to draw best quality water from the source, thereby reducing load on the treatment plant.
- The intake must never be located at the downstream or in the vicinity of the point of disposal of wastewater.
- The site should be such as to permit greater withdrawal of water, if required at a future date.
- The intake must be located at a place from where it can draw water even during the driest period of the year.
- The intake site should remain easily accessible during floods and should not get flooded. Moreover, the flood waters should not be concentrated in the vicinity of the intake.

ater Quantity Estimation

The quantity of water required for municipal uses for which the water supply scheme has to be designed requires following data: Water consumption rate (Per Capita Demand In Ittres per day per head)
Population to be served.
Quantity= Per capita demand x Population

L-4

Introduction

Average person consumes no more than 5 to 8 lit. of water per day.

However total water drawn from public water supply is quite high.
Types of demand

1. Residential or domestic
2. Institutional use
3. Public or civic use
4. Industrial use
5. Water system loses

Water is needed for

- Drinking
- Cooking
- Bathing
- Washing of cloths
- Washing of utensils
- Washing of house
- Flushing of WOs

As per IS 11.72-19.57 water consumption is 135 lpcd

Water requirement for domestio puriposes

S. No. Description

Amount of water in Ipod

1 Bathing
2 Washing of cloths 55

3 Flushing of WCs 30

4
5
6
7
Drinking
Total
135

Gonsumption of water for animel and live stock

S. No	Animals	Water consumption in lit per animal per day
$\mathbf{1}$	Cow and buffalo	$\mathbf{4 0}$ to $\mathbf{6 0}$
$\mathbf{2}$	Horse	$\mathbf{4 0}$ to $\mathbf{5 0}$
$\mathbf{3}$	Dog	$\mathbf{0 8}$ to $\mathbf{1 2}$
$\mathbf{4}$	Sheep and goat	$\mathbf{0 5}$ to $\mathbf{1 0}$

Water for iomestio and non-iomestio

Description
 Amount of water
 (Ipcd)

1. For communities with population 40 (min.) up to $\mathbf{2 0 , 0 0 0}$
a) Water supply through stand post

70 to 100
b) Water supply through house service connections
2. For communities with population 100 to 150 20.000 to 1,00,000
3. For communities with population 150 to 200 above 1,00,000

2.Institutional use

S.No.	Institution	Water requirement (lit/head/day)

1 Hospitals (including laundry)
a. No of beds exceeding 100
b. No of beds not exceeding 100

2 Hotels
3 Hostels
4 Nurse's home and medical
450 (per bed)
340 (per bed)
180 (per bed)
135 quarters
5
6 Restaurants
7
Airports and seaports
135
70 (per seat)
70

Junction stations and intermediate stations

70

9 Terminal stations
 45

10
Day schools and colleges
45
11 offices
45

12 factories
45
13 Cinema, concerts halls and 15 theaters

3. Public or Oivic use

- Road washing $\rightarrow 5 \mathrm{llt} / \mathrm{cap} /$ day
- Sanitation $\rightarrow 3$ to 5 Ipcd
- Public parks $\rightarrow 2$ to 3 lpcd
- Fire fighting \rightarrow calculated by various formulae
- P= Population in thousands
- $\mathbf{Q}=$ Quantity of water in Lit/min
- F= number of simultaneous fire streams

Authority
American Insurance Association (National Board of Fire underwriters formula)
2 Kuchling's Formula
Freeman's Formula

Ministry of Urban
Development Manual
Formula (MUD)
Buston's formula $5663 \sqrt{ }$ P

Problems on fire demand liome work

1. Compute fire demand for cities having population
I. 1,40,000

If. 3,50,000
IF. 40,000
IV. 35, 000

Use all formulae
Ans

4. Industrial use

	Industry	Unit of production
1. Automobile	Vehicle	Water requirement in kilolitres per unit
2.	Distillary	Kilolitre (proof alcohol)
3.	Fertilizer	Tonne
4.	Leather	100 kg (tonne)
5.	Paper	Toone
6.	Special quality paper	Toone
7.	Straw board	Tonne
8.	Petroleum refinery	Tonne (crude)
9.	Steel	Tonne
10. Sugar	Tonne (cane crushed)	4
11. Textile	100 kg (goods)	$400-400$

L-5

factors Difecting rate of demandi

- Stre of the city:Per capita demand for big cities is generally large as compared to that for smaller towns as big cities have sewered houses.
- Presence of industriesi more the industries more will be the water required
- Cllimatic conditions: in winter seasons lesser water demand and in summer season water demand is more
- Habits of people and their economic status l.e. standard of living
- Lawn Sprinkling
- Age of community- new community \rightarrow more water and vice-versa
- Quality of water If water is aesthetically and medically safe, the consumption will increase as people will not resort to private wells, etc.
- Pressure in the distribution systema more pressure more will be demand and vice versa.
- Efficiengy of water works administration Leaks in water mains and services; and unauthorised use of water can be kept to a minimum by surveys.
- Cost of water-more cost less use and viceversa.
- Polioy of metering and charging method: Water tax is charged in two different ways: on the basis of meter reading and on the basis of certain fixed monthly rate.
- System of supply-continuous system increases water use whereas intermittent system

Tariation in water demand

Seasonal variation: the demand peaks during summer. Firebreak outs are generally more in summer, increasing demand. So, there is seasonal variation. Dally variation depends on the activity. People draw out more water on Sundays and Festival days, thus increasing demand on these days.
Hourly variations are very important as they have a wide range. During active household working hours i.e. from six to ten in the morning and four to eight in the evening, the bulk of the daily requirement is taken. During other hours the requirement is negligible. Moreover, if a fire breaks out, a huge quantify of water is required to be supplied during short duration, necessitating the need for a maximum rate of hourly supply.

Objective Questions

1. As per IS 1172-1957, water demand for bathing is _I Ipod.
2. As per IS 1172-1957, water demand for cooking and drinking is _ Ipod respectively.
3. For restaurants
lit/seat/day water is required.
4. In dififerent fire demand formulae fire demand \mathbf{Q} is expressed in
5. For 1 lac population, fire demand by Buston's formula is

6. In national board of underwriters formula P indicates

Theory Questions

1. Write short notes on the following
I. Various types of Water demand
II. Fire demand
III. Intake structures
2. Explain factors affecting water demand
